JOURNAL OF COMPUTATIONAL PHYSICS 116, 369-379 (19953

Fast Fourier Transforms of Piecewise Constant Functions

EuGeENE SORETS*

Depariment of Mathematics, Yale Universiry, P.Q. Box 208283, New Haven, Connecticut 06520-8283

Received April 8, 1994

We present an algorithm for the evaluation of the Fourier trans-
form of piecewise constant functions of two variables. The algorithm
overcomes the accuracy problems associated with computing the
Fourier transform of discontinuous functions; in fact, its time com-
plexity is O(N? log N + NP log® (1/8) + Vog® (1/£}), where ¢ is the
accuracy, N is the size of the problem, Pis the perimeter of the set
of discontinuities, and V is its number of vertices. The algorithm
is based on the Lagrange interpolation formula and the Green's
theorem, which are used to preprocess the data before applying
the fast Fourier transform. It readily generalizes to higher dimen-
sions and to piecewise smooth functions. @ 1995 Academic Press, Inc.

1. INTRODUCTION

The fast Fourier transtorm (FFT) (see, for example, {2, 3,
81} is a ubiquitous too! of numerical analysis, essential in signal
processing, electrical engineering, VLSI circuit modeling, med-
ical imaging, and innumerable other fields. It is a very effective
tool when the function to be transformed is smooth; however,
if the function has a jump discontinuity, then the accuracy of
the FFT is significantly reduced. This loss of accuracy is the
result of the simple fact that FFT, from the mathematical point
of view, is a collection of integrals evaluated via the trapezoidal
rule. Therefore, the numerical error that results from a jump
discontinuity is on the order of N~! for a problem of size N.
Such errors make even single precision caiculations prohibi-
tively costly, especially in higher dimensions. The cost can be
reduced with the help of the Richardson extrapolation, but
double precision calculations are still virtually impossible.

In this paper we introduce an algorithm for efficient and
accurate computation of the Fourier transform of piecewise
constant functions. The algorithm uses Green’s theorem to re-
place the area integrals that naturally occur in computing the
two-dimensional Fourier transform of piecewise constant func-
tions, with line integrals, thereby significantly reducing the
number of nodes required for integration; after that the quadra-
ture weighis are redistributed onto the wniform grid with the
help of the Lagrange interpolation formula, bringing the data
to the form suitable for the FFT.

* Supposted in part by the National Science Foundation under Grant
DMS901213595.

The paper is organized as follows. In Section 2 we list the
relevant mathematical and numerical facts. Section 3 contains
the precise statement of the problem and Section 4 contains
the notation. A description of the algorithm, along with the
error estimates and complexity analysis, can be found in Section
5, and Section 6 contains the results of numerical experiments.

We present the analysis in two dimensions under the assump-
tion that the functions 1o be transformed are piecewise constant
and that the discontinuities occur along a collection of polygons.
Neither of these is a serious limitation; the algorithm generalizes
quite naturally to higher dimensions and to curved boundaries.

2. MATHEMATICAL AND NUMERICAL PRELIMINARIES

2.1. Green's Theorem

We will encounter area integrals of the form
JD e*lﬂirﬂxe 72:Tinydy dx’ (])

where D is a bounded domain in R, We will replace them with
line integrals using the following version of Green’s theorem in
the plane:

f—dvdx JQdy)

Here 0 :R2— C' is a function in CA(D) and T is the boundary
of D travesed counterclockwise. Applying (2) to (1), we arrive
at a formula that will be useful to us later:

J. e —21rr'm'1€ ~2ziny dy dx
D

1) ‘
iy j gTimmeg~hminy dy whenm 20,

1
= (3)
L_ xe T dy when m = 0.

2.2, Lagrange Interpolation

The Lagrange interpolation formula (see, for example, {1, 4])
approximates a function f:R' — C! by the expression

369

0021-99591/95 $6.00
Copyright © 1995 by Academic Press, Inc.
Al rights of reproduction in any form reserved.

370

L Fox—x,
fxy= Zlf(xm) [I—+ R, ()
J::n!l m H
where ¥, <X - -+ < x, are points on the real line and R,(x) is

the error term. For each m = 1, ..., p, we will denote by &,
the polynomial defined by

P ox—x

S.(x) = . 5

(x) n];lem v (5)
nEm
and observe that
1 ifm=n,
Oy} =

0 ifmzn

In view of (5), formula (4) can be rewritien as
flx)= gf(xmwm(x) + R,(X). ©®
R,(x) in Egs. (4) and (6) is the error term and
R,(x) —f—(;% ﬁl {(x — x,) forsome (€ (z1,x,).

In our case, the nodes x, ..., x, are going to be uniformly
spaced with the sampling interval 2 > 0, and the point x will
lie in the interval of length k& centered on the center of the
interpolation window [x,, x,]. Furthermore, the function f will
be of the form f(x} = exp(2mikx). A direct calculation shows
that under these conditions R,(x) satisfies the inequality

T(p/2 + Y
P!

- hP(2mk)P, N

where I'{z) is the gamma function: I'(z + 1) = zl.
We will also make use of the two-dimensional Lagrange
interpolation formula:

por
[y)= Z 2 8a(3) 8.(¥) - fms) + Ro(x,¥). (8)

Here the points {(x,,, y.)}5.=1 are the interpolation nodes, the
functions &4, ..., 8, are the same as in (5), and the error term,
R,(x, y), can be estimated as

I'i(p/2 + DF
|Rp(x’y)|5m.p%)l

- [REC2ak) + RE2al)P] (9)

when the function f{x, y) has the form exp(2mi(kx + [¥)), the

EUGENE SORETS

nodes are uniformly spaced with the sampling interval &, along
the x-axis and #, along the y-axis, and

he ks h, h
(x,y)E x‘_z’x°+5 X yr_?vyc_i_g) (10)

with

% i +y”) (1)

(xe, ¥} = (3 3
2.3. Gaussian Quadratures

Gaussian quadrature (see, for example, [4, 7]) provides an
approximation to the integral of a function f:{1, 11 — C,

i q
[Lf@di =3 few+ EF), (12)
where the points ¢, ..., , are the Gaussian nodes on the interval
[0, 1], the numbers w,, ..., w, are the corresponding Gaussian

weights, and E (f) is the error term. The Guassian nodes
and weights are chosen to make the approximation (12) exact
whenever the function f is a polynomial of degree less than
24. Consequently, Gaussian quadrature is effective for func-
tions that are well approximated by polynomials; in fact (see,
for example, [11),

(g’

ELD = g v viepT

FE(Y) forsome { €0, 1) (13)

The proof of (13) can be found in [4].

3. STATEMENT OF THE PROBLEM

Cur goal in this paper is to find a way to compute Fourier
transforms of piecewise constant functions in R% In other
words, we would like to construct an algorithmn that for every
piecewise constant function f:R?* — C' will compute an ap-
proximation to the collection 9f integrals, to which we will
refer as the Fourier transform f of f,

Fom® [[fayyetmmewmayds, (14)

where m and n are integers such that — M <m=Mand - N <
n = N. We will refer to the pair (m, n) as the frequency. The
pair (M, N), thus, is the highest frequency of interest. The
most common approximation to the integrals (14), the discrete
Fourier transform [2] is, essentially, the trapezoidal rule; its
standard implementation is the fast Fourier transform (see, for
example, [2, 3, 8]). For discontinuous functions the trapezoidal
rule has accuracy on the order of N~' for an N by N problem,
or, conversely, for accuracy &, FFT will require on the order

TRANSFORMS OF PIECEWISE CONSTANT FUNCTIONS

of (1/e% log (1/€) operations; such performance is woefully
inadequate in most practical problems. In this paper we solve
the following problem.

Problem 1. For any given piecewise constant function
£ R? — C! with discontinuities along a finite number of poly-
gons and for any given accuracy £ > 0, compute rapidly all
the integrals (14) with accuracy &.

4. NOTATION

Given a set § C R?, we denote by 1;: R*— C' the characteris-
tic function of §:

1, if(x,¥)ES,

Li(x, y) & (15)

0, otherwise.

Given a piecewise constant function f: R? — C!, we write it
as a linear combination of characteristic functions,

Fony)= 2 K 155, 7), (16)

where J is a positive integer or +co, and, for each j, X; is a
complex constant and D, is a bounded domain in R% We will
assume that all domains D, lie within the unit square and their
interiors are pairwise disjoint. We will denote the boundary of
each domain D; by T,

T/ a7
and we will assume that each I'; is a polygon. Indeed, for each

j» let {y1: [0, 11 = I}z, be the set of paths that form T;. Then,
our assumptions are

1. D,/C[0,1] X [0, 1) for all j,
2, Int(D;) N Int (D,) = & for all distinet j and £,
3. Every path v} has the form

yit) = (g + at, by + bt) forr €0, 1], (18)

where ¢y, by, a, and & are constants.

Note that since v1([0, 1]) is a straight line segment inside the
unit square, |b| = 1,

We will repeatedly refer to the following special function
F,..R'— C

e —2m‘m:¢e —2xiny
w) Tomm when m#0,
Foalx, y) = mim

xe *2m'ny’

(19)
whenm = (. '

371

For every j and /, by {(xi, :)}L, we denote the collection
of points which is the image under v} of the Gaussian nodes
ti, -y Ig ON the interval [0, 1] (see (12)),

def

(xh, 91 € i) (20)

for ¥ = 1, ..., g;. We denote the corresponding weights by
wh, SO that

wh = o, (21)

for k = 1, ..., q;, where w, is defined in (12) with g = g,.
Let , and &, be the sampling intervals of a uniform grid on
[0, 17? along the x- and y-axes, respectively, and , for a positive
real r, let | » | denote the greatest integer less than r, For integers

h=1, ..,k fand i, =1, . Bt by (x,,) we denote
the elements of the uniform grid:

def

(xi,y5,) = (1 = Dhy, (1 = Dhy). (22)

For any point (y, ¢ € {0, 1} and integers j,. j» € 11, pJ,
we define X; (y) by the formula
for even p,

x|_p .
o
(th 2 1“')}”
(23)
LY.+1J¥17;1+) X
(lhx > 3 ji |k, forodd, p,
and we define y; () by
de P :
) -C+
([h,. : 1+12)hy
W 1) p—1 .
(lh_y + EJ - —2~— +_]2) hy for odd, p,

We define the function W, ,,: {1, .., p} X {1, ..., p} = Z* by

forevenp,

.0 (24)

(25)

e Xh(x)
th.da)(h,Ja)d:f(l + A

| 51‘1(95’))
b T)

For any (x, 4 € [0, 1]* and imntegers j,, j, € [1, p]l, we
define the function A, ,,: 77 — C' by

Bipapli, i)

d==f 6}1(X)) 612(!!!)’

Q, otherwise.

when (!l R 12) = W(X-W)(j) N jz), (26)

We will make use of the function G:Z? — (', defined by

372

;Lo
=1

2 Kj «b- Gji M Aui_wi)(ih 12) (27)

1 4=1

Gy, in®

7

with K; defined in (16), b defined in (18), w, defined in (21),
(x!, ¥}) defined in (20), and A(xiwi)(i' » I) defined in {26).

Remark 4.1.
[0, 1T, the points

It is easy to see that for any point (y, ¢) €

(Ejl(x)a ijz(d"))a jl = 15 27 ---!p’jl = 1’ 2: veer Py (28)

are the p? nodes on the uniform grid satisfying condition (10)
with respect to the point (y,). We will be interpolating func-
tions of the form (19) from the uniform grid onto arbitrary poinis
{x,) on the square [0, 1]?; in fact, we will be interpolating such
functions from the p? nodes {28} onto the point { y, ¢, and we
will use the Lagrange interpolation formula (8). Obviously, the
interpolation coefficient corresponding to the point W, ,.(j1,
J2) is 8 (x) - 8,(1p) (see (5), (8).) Thus, the function Wiy :
{1, ., p} > {1, .., p} — 77 assigns to a pair of integers j,,
Jz €11, p] the location of the interpolation node on the uniform
grid indexed by (i, i»), while the function A, ,:Z* — C'
provides the interpolation coefficient corresponding to that
node.

5. DESCRIPTION OF THE ALGORITHM

5.1. Informal Description of the Algorithm

We wish to compute the Fourier transform
fommy = [} fx e mimemm gy ax - @9)

of a piecewise constant function f of the form (16) under
assumptions 1-3 of Section 4.
Substituting (16) into (29), and using (3), we get

J
f(m, n) = J; J':)E KJ_ . lo,(JC, y)e*Zn'Em.Iefhin}‘dy dx
i=1 !

Ji

J
El J‘D K- e*lmmxe-znin_vdy dx (30)
= i

’
'211 jr K" Fualx, y)dy,
IEIRAY

with K, D, defined in (16), I'; defined in (17), and F,,, defined
in (19).

Let {yi}2, be the set of paths that form I, as defined in
(18). Along each y} we approximate the line integrals in (30)
via Gaussian quadratures. Thus, using approximation (12) along
each | and substituting the result into (30), we get

EUGENE SORETS

L

>

gl
=1

VR

[LK) - Fuweydy - bt

0

f(m, n)=

7

(31

-

5 4

J
zz EKJ‘FmJJ(XL l!fi)‘b'&)i,

=1 1=1 k=]

with K; defined in (16), F,,, defined in (19), (i, ¥}) defined
in (20), w; defined in (21), and & defined in (18).

Next, we redistribute the weights from the Gaussian nodes
(20} to the uniform grid with the help of the Lagrange interpola-
tion formula (8) applied to the function F,, at (x, y) =
(xi, i) for every k and 1. The final approximation to f(m,
1) becomes

<=

i

. [
fmomy=> K b-w Zl Zl 8,(xt)
~ e

=1 EL =l

(32)
B () Fun (55,000 V(W)

with &; and §;, defined in (5), ?cjl()(i) defined in (23), and
¥;,(0}) defined in (24).

Changing the order of summation in (32), and using (26)
and (27), we see that

flm, n)
I_h;]J l."‘,_lj(I LJ- 4y

~ 2 2

i=l =1

| =1t i=l

: A(Xi.vﬁofk)(il L) iz)) : Fm.n (-xi1 2 yil)

s
=2 21 Glir. iz) * Funx: s ¥1) (33)
Q=1 Q=
L b
G(i), i) » e e 5™ when m#0,
—2mim .-,=21 S{ ()]

!2:

b1 ')

E Z xil " G(.i] . il)) e’zﬂfnyll

=1

whenm =0,

which can be readily computed for all m and n with the help
of two- and one-dimensional FFTs.

Remark 5.1, The function G, defined in (27}, can be viewed
as a weak approximation to the function f, defined in (16). In
other words, while G is a very poor approximation to f itself,
the Fourier transform of G (in the sense of {33)) makes an
excellent approximation to F (See Theorem 1 below.)

5.2. Error Estimates

In this section we define the error of the computation, E..,
by the formula

TRANSFORMS OF PIECEWISE CONSTANT FUNCTIONS

def
E. = max

—-M<m=m
~N<p=N

i L
fm,n) — ; 2 G(irn i) - Frn(xi, v} (34)

and estimate the accuracy of the approximations (31) and (32)
made in Section 5.1.
Let) be a straight path as defined in (18):

yi() = (ag + at, by + br) fort €0, 1].

Then,

[Fundy= ! Funorvhio-ba, 35)
¥i 0

Combining (35) with (12), (18). and (20), we see that the error
made by the Gaussian quadrature of the line integral of F,,
along the path 7y} equals

@
2 ¥ bt~ 3, Fanes 0 b o

=b-E,(Fa.ov), (36)

with E, defined by (12). The following lemma provides a bound
on this error.

Lemma 5.1,
—N < n =N,

For all (m, n) such that —M << m = M and

(2ayug,N'y,
(2¢: + DIg)"7
(VM? + N2 Val + b2,

|Eg(Fra®y)| =

(37

Proof. We are going to estimate £, with the help of (13).
To that end we calculate a bound on the (2g,)th derivative of
(Frn © ¥1)t). The path 7y;, defined in (18), has the form
vi(t) = (@g+ at, by + bt). Thus,

(Fouu®y(D)

e ﬂ?ﬂ‘l‘(maoi-nbo} e =2nilma+nb)

; ~when m #0,
— —2mim (38)

(an + at) . e—zmnbne—zmm when m = 0,

and, consequently,

qu, ,
P (Fren® ¥y)
B [——Zm(ma + ﬂb.)]?'q‘ e —27ri(mao+nb0)e =2milma+nby
—2mwim

(39

373

when m # 0, and

d%

e (Fon ® YD)

= [(=2minbY® + a - 2g, - (—2minb)% e ~minboe ~2minkt (4())

when m = 0.
Let

ME M+ Ny LY (@ + pHn, (41)

Then, it follows from (39) that for m = Q,

(2m|ma + nb|y=:
27 |m|
QaVm® + n? - Val + by
27| m|

=

dzq" i
ﬁ (Fm,n @ '}’.‘)(I)

42)

MLy
- A=
27 |m|

and, it follows from (40) that for m = 0,

d%

o ~yt
d24ft (Fm,n ')’ [)(t)

< [(=2minb) + a -« 2q,- (—2mwinby4™|
=< |2anb % - | — 2mink + 2q, - a|
= |2mnb[% - (Cmn) + Q@) - (@ + bH? (43)

= QuMLy1™ - (2aM) + (2" L

2\ 112
= (eMLy" - (1 + (ii))
M

= 2aML)y* - gi-

Since the bound in (43} is always larger than the one in (42),
putting (13), (42), and (43) together, we get:

(')

Gar s Dicayy G g, (49

|Ey (FnoyD)] =

which is exactly the claim of the lemma. |

CoroLLARY 5.1, Suppose that v:[0, 1] — R is a straight
path defined by (18), F,,, is defined by (19) with —M < m =
Mand —N < n = N, and integer ¢ = 1 and real ¢ > 0 are
such that

374
— 1
g > max {4M L,log ;} (45}

with M and L defined in (41). Then,

<b-g=e (46)

}jTFm.ﬂdy - ;Fm,n(y(r.{')) .b t Wy

Here t, and w, are the Gaussian nodes and weights on
[0, 1], respectively.

Proof. Using Stirling’s approximation to g!, we see that
the right-hand side of (37) is not greater than

Y IAC M\
Vg (eﬁML) - (2.4ML) . “n

4 4q g

Therefore, the inequality (46) will hold for any g such that

g > max {4A_4Z, log é} | (48)

Remark 5.2. The quantity M in (41) can be viewed as the
frequency of the function F,y along -y, and L as the length of
. Thus, Corollary 5.1 states that the number of Gaussian nodes
needed to compute the line integral) ,Fuy dy with accuracy £

is proportional to the number of periods of Fyy along ¥ (so
long as that number is greater than log(1/e)).

Approximation (32) of Section 5.1 was made with the help
of the Lagrange interpolation formula applied 1o F,.:

b4 ?
FralXh: 1) = 20 2 8,00~ 8,.(4)
L (49)

* P (), 3 () + R, (xe),

with R,(x}. i) defined in (8), % (xi) defined in (23), and
¥;,(4) defined in (24). The following lemma, which is an
immediate consequence of (9), provides a bound on
Ry (xi ¥11)-

Lemma 5.2. For all points (x,) satisfying condition (10)
and all integers (m, n) such that —-M < m = M and —N =
N, the term R,(x.) in (49) satisfies the inequality

|RP(X5 l!)‘)l =

[_F(P_‘E""—l)]z [27h M) + @wh,N)?] (50)

= Vp [(2ah,M)? + (27h,N)?] (51)

2P

forallp = 2.

EUGENE SORETS

The following lemma is an immediate consequence of (51).

Lemma 5.3, Suppose that under the conditions of the pre-
ceding lemma, v € R' is defined by the formula
v=1(p &) 3g7", (52)

with &£ an arbitrary positive real number, Suppose further that
h. and h, are defined by the formulae

b= o
" (53)
1
By = 2uN’
Then,
(R, (x,)] <e (54)
for all p = 2.
Remark 53. 1t is easy to see from (53) that » is the ratio

between the actual density of the nodes in each of the directions
x, y and the density required by the Nyquist theorem. Thus,
we will refer to v as oversampling.

The following theorem provides the principal error estimate
of this paper.

THEOREM |, Suppose that < > 0 is real, p = 2 is an
integer, v is defined by (52), and E.. is defined by (34). Then,

J
Em52321|1<,|‘||r,. , (55)

where ||T;|| denotes the length of T}, and K, and T are defined
it (16} and (17), respectively.

Proof. Substituting (49) into (36), we get

[Fuwevi - bar

s

= 2 > 8 (xi) - 8,1 - Faa (X, (X0, 3,(41)) (56)
H=l j=1

k=1

1

+ bR (Funov)) + 2 b wh R,(Xis).

Denoting by R, the right-hand side of (51), by qu the right-
hand side of (37), and, observing that 23}/ | @} = 1, we see that
the error of integrating along the path 7} (see (56)) is

9

b-E (F,oyD+ ; b wf- R,(xk, ¥h)

=bE, + bR, =2be =2Le, (57)

TRANSFORMS OF PIECEWISE CONSTANT FUNCTIONS

if ¢, is chosen according to (45) and » is chosen according to
(52). (L, defined in (41), is the length of y;.) _

Summing up the errors in (57) over all paths] that form
the boundary I';, we see that integration around each F,- results
in an error not greater than

2¢{T3]},

where |||} denotes the length of T';. The total error of the
computation is, therefore, at most

J
23 K| IT;). 1 8)
=
Remark 54. Theorem 1 provides us with a method of
choosing parameters p and » so that the error of the computation
E..,defined in (34), will not exceed a given tolerance 7. Indeed,
given n > 0, we set

r =1
s%"—-‘(zz sK,-i-nr,-u) -
=t (59)

p déflogé, v=73g"1" =3¢,

and Theorem 1 assures us that E. < 1. An examination of
Tables II-VI1I shows that the bound (55) is not optimal; indeed,
a more involved analysis shows that ¥ can be significantly re-
duced.

The following lemma is an immediate consequence of the
definitions (14), (18), (19) and of Eq. (30); it is used in Section
6 to test the numerical accuracy of our algorithms.

Lemma 5.4. Under the assumptions 1-3 of Section 4,

b

-~ i /
Fonmy =3 S K[Fustx)y, (60)

where f(m, n) is defined in (14), F,, is defined in (19), and
vt is defined in (18). Furthermore, for each j = 1, ..., J and
=1, .., L

L{ Fron(x, y}dy

—_ . —21ri(ma1+rlbl)_ —2miimag¥nby)
_{bi—by-le e 1

- 61
(—4u’m?) - [ma, + nb, — ma, — nbg] (61)
when m # 0,
a _ ‘
J’ 'Fm.n(xy y) dy = _20. [e—2mnb| _ e—zmnbnl
i mn (62)
e—2rrfnb| e—Zm'nbl . 8_2’"""’0
+ (g, —
(al aO) [Hzﬂ'l’n 4:”2”2(!)[_ bﬂ) :|

375

when m = Qand n # 0, and

1
[Frstryydy=2 0~ bo@+a) (63

whenm = n = 0. Here, (ay, bo) and (a1, b)) are the endpoints
of the path v

(@0, b)) E¥i0), (a1, B} E ¥i(1). (64)
We will refer to the algorithm based on L.emma 5.4 as direct.

The run times of the direct algorithm are listed in column 6 of
Tables I1-VII.

5.3. Formal Description of the Algorithm

Step 0: Initialization.

Comment: {Choose the accuracy of the computation ¢ and
determine the degree of Lagrange interpolation p and the
oversampling factor ¥ according to (59). Create the function
G(m, n), defined in (27), on the uniform grid on [0, 1] X
[0, 1] with the sampling intervals k, = (2vM)" and h, =
(2uN)"'. Create a function Gy(r) which will be used in the
computation of the Fourier transform for the case m = 0.
Precomputer the denominators of Lagrange interpolation and
the Gaussian nodes and weights on [0, 1].]

dorn=1,..,2vN

Gg(n) =0
dim=1,..2vM
Gm,n) =10
enddo
enddo

Step 1. Green’s Theorem and Lagrange Interpolation.
Comment: {For each j, integrate the constant function K;
along each of the paths yi:[0, 1] = T '}, defined in (18), and
then redistribute the weight from each of the resulting
Gaussian nodes to p? Lagrange nodes from the uniform grid
as in (32). Note: the function {f, ,, below is the second
coordinate of the function W, ,,, defined in (25).]

doj=1,..,J

do/=1,.., L

Using the precomputed nodes and weights on {0, 1]
calculate the Gaussian nodes {(xi, i)} and the weights
{wi} (defined in (20) and (21), respectively) need to com-
pute the line integrals along v;.
dok =], v G

doj,=1,..pandj,=1,..,p

GWii uif(rs 02 = GIWL wi(Ji, J2)

K-8, (xi) 3,40 b wi

376

Go(Uu}(,.;,}()(jhjz)) = Gu(Utxj.win(jl 2J2)

+ K xe 8,(xi) 6,000 - b o
enddo
enddo
enddo
enddo

Step 2: Fourier Transform.
Comment: [Apply the two-dimensional FFT to the 2pvM by
2yN array (G and only keep the frequencies (m, n) with
—M<m =M and —N < n = N. Store the results in the
array FG, Similarly, apply the one-dimensional FFT to the
array G, keep only the frequencies n with —N < n = N,
and store the result in the array FG,.]

Step 3: Post-processing.
Comment: [For each frequency (m, n) with m # 0, divide
its coefficient by —2mim, which brings the computation in
agreement with Eq. (33). The case m = 0 is already correct
and needs no adjustment. After this step FG becomes the
desired Fourier transform with the absolute error E.. satis-
fying (55).]

dom=-M+1,. . Mandn=-N+1,.. N
with m # 0
FG{m, n) = FG{m, n)/(—2wim)
enddao
don=~-N+1,.,N
FG(0, n) = FGyn)
enddo

Remark 5.5. In certain applications, for example in VLSI
modeling, the boundaries of the domains D, contain vertical
and horizontal straightline segments. Contribution from the
horizontal segments to (30} is zero, and if § is a vertical
segment from {a,, bg) to {ag, b)), then for n = 0,

Fm,n(al); bl) - Fm,n(a(}a bO)
—27in

[Fantx)y = ;65

that is, computation of a line integral is replaced by evaluation
of a sum of two terms of the same type as in the approximation
(31). Obviously, this reduces the CPU time requirements of
the algorithm; the effect of this reduction on the overall perfor-
mance of the algorithm is discussed in Section 6.

5.4. Complexity Analysis of the Algorithm

Time complexity of the algorithm is summarized in Table
L. The estimate for the total operation count is, therefore,

O(V*MN + p°N, + v’MNlog MN + vNlog N)

= O(pN, + »?"MNlog MN). (66)

EUGENE SORETS

We now estimate the total number of Gaussian nodes N,. For
a given accuracy & the number of Gaussian nodes needed for
a single path v, according to Corollary 5.1, is at most

max {4@3, log l} . (67)
&

where M and L are defined in {41) and discussed in Remark

5.2. Therefore, the number of nodes needed for each '} is at most

where |T;|| is the length of T}, and L; is the number of paths
y: that form I It is now obVJDus that the total number of
Gaussian nodes N, satisfies the inequality

N, = max {m 2 T30, (E L) log 8}

~o(#p=(1s) -v)

where P is the total perimeter of the domains DJ, and V =
3., L; is the total number of the straight paths %, or, equiva-
lently, the total number of vertices.

Choosing p and » according to (59), and putting (66) and
(69) together, we see that the time complexity of the algorithm
is not greater than

{69)

O(pN, + v*MNlog MN)
=0 (HZ log M + (log2 é) PM + (log3 1) V). (70)
£
6. NUMERICAL EXPERIMENTS

We implemented the algorithm of Section 5 both with and
without the use of the Green’s theorem as described in Section
2.1. The algerithm was implemented in FORTRAN 77 and
the implementation was run on SPARCstation 2. All internal
calculations were performed in double-precision arithmetic, but
the parameter p was relaxed for single-precision experiments.

In the tables below we report the results of the numerical
experiments with the following three algorithms. In Algorithm
1 we make use of the Green’s theorem as described in Section
5.1 and, in addition, make use of the Remark 5.5 to integrate
along the horizontal and vertical lines. Algorithm 2 is also
based on the Green’s theorem, but without the preferential
treatment for horizontal and vertical lines. In Algorithm 3 the
area integrals are treated directly without recourse to the
Green’s theorem.

By the error E. in columns 7-9 of the Tables II-VI, we

TRANSFORMS OF PIECEWISE CONSTANT FUNCTIONS

377

TABLE 1

Time Complexity of the Algorithm

Step Operation count Explanation
0 O(*MN) Enitizlization of all arrays
i O(pN,) N, is the total number of Gaussian nodes created. For each Gaussian node (x}. ¥1), p? Lagrange coefficients
§,(x1) - 8,(¢1) are computed. Since their denominators (see (5)) are precomputed, all p? Lagrange coeffi-
cients can be calculated in O(p?) operations
2 O(+*MN log MN + vNlog N) There is one FFT of a 2oM by 2pN array and one FET of an array fo length 20N
3 O(MN) For each frequency {(m, n), multiplicatton of its Fourier coefficient by (—2wim)™'

mean the error E., defined in (34), with f"(m, n) computed
using the direct method of Lemma 5.4.

Remark 6.1. In the Examples 1-3 we include the perfor-
mance of a straightforward application of the FFT. We do
that for illustrative purposes only; this method cannot be used
inpractice unless very crude accuracy can be tolerated, since
for discontinuous data, the error of the FFT is on the order of
O(N™"y at every frequency. This large error is a consequence
of the fact that the FFT of a periodic function is mathematically
equivalent to evaluating every Fourier coefficient via the trape-
zoidal rule. Therefore, in order to achieve accuracy & at any
frequency with a straightforward application of the FFT to a
discontinuous function we must apply the FFT to an array of
size 1/e by l/e, regardless of how many frequencies we are
actually interested in. The operation count of such a procedure
would be on the order of (1/¢2) log (1/&), which is prohibitive
even for moderate accuracy,

In all examples below K; = 1 for all j. All reported run times
include all initializations, but not input and output.

ExampLE 1. In Tables II and III we show the results of a
computation of the Fourier transform of a single large rectangle
{approximately 0.6 by 0.66) using Algorithms 1, 2, 3, the direct
method (see Lemma 5.4), and the standard FFT.

form of 1215 rectangles. Their total area is 0.128 and the
perimeter of their union is 60.0. The results of this example
can be found in Tables IV and V.

Exampre 3. In this example we calculate the Fourier trans-
forms of a 40 by 50 pm piece of a VLSl mask (courtesy of
Eytan Barouch}. In most models these masks consist of a large
number of simple geometric shapes that represent the integrated
circuit. Here we compute the Fourier transform of 1215 small
rectangles (the same ones as in Example 2) and 424 triangles.
Their total area is 0.132 and the perimeter of their union is
58.9. Tables VI and VII contain the run times and errors for
this example.

The following observations can be made based on the numeri-
cal experiments above:

1. The errors for all three algorithms are essentially inde-
pendent of the size of the problem.

2. All three algorithms have approximately the same ac-
Curacy.

3. The run times grow approximately like ¢ in Example
I (in agreement with (70)), while the run times in Examples 2
and 3 appear to grow linearly. This apparent linear growth is
the result of the large number ¥, of Gauss—Legendre nodes

ExampLe 2. In this example we compute the Fourier trans- generated, causing Lagrange interpolation to dominate the com-
TABLE 11
Run Times and Errors for Example 1; Double Precision
Double precision: p = 36 and v = 3
Run times (seconds) Error E..

N Alg. 1 Alg. 2 Alg. 3 FFT Direct Alg. 1 Alg. 2 Alg. 3 FFT

32 1.3 5.6 328 03 0.6 9.1e-15 8.1e-15 6.9e-15 2.3e-02

64 3.6 14.8 1395 0.6 26 4.2e-15 5.le-15 4.7e-15 9.2e-03

128 243 46.7 7037 2.2 10.4 3.1e15 3.2e-15 2.8e-15 5.0e-03
256 110.7 [55.1 28280 89 41.5 3.3e-15 3.4e-15 2.0e-15 2.5e-03

378

EUGENE SORETS

TABLE III

Run Times and Errors for Example 1; Single Precision

Single precision: p = 16 and v = 3

Run times {seconds} Emor E..
N Alg. 1 Alg. 2 Alg. 3 FFT Direct Alg. 1 Alg. 2 Alg. 3 FFT
32 1.2 23 74 0.3 0.6 1.4e-08 1.4¢-08 9.9¢-09 2.3e-02
64 5.6 7.7 292 0.6 2.6 6.5¢-09 7.8e-09 7.2e-09 9.2¢-03
128 250 293 1191 2.2 104 4,709 4.7e-09 4.2e-09 5.0e-03
256 114.0 125.0 6209 8.9 41.6 2.0e-09 2.7e-09 1.9¢-09 2.5e-03
TABLE IV
Run Times and Errors for Example 2; Double Precision
Daouble precision: p = 36 and ¥ = 3
Run times (seconds) Error E..
N Alg. 1 Alg. 2 Alg. 3 FFT Direct Alg. 1 Alg. 2 Alg. 3 FFT
32 18 254 920 34 566 1.0e-14 1.3¢-14 5.7e-15 4.2e-02
64 24 401 1990 a7 2263 1.1e-14 2.4c-14 1.0e-14 3.1e-02
128 46 738 5190 5.0 9054 1.1e-14 2.5¢-14 4.5¢-15 2.9¢-02
256 130 1336 13944 12.2 36133 1.9e-14 1.5e-14 2.7e-15 1.7¢-02
TABLE V
Run Times and Errors for Example 2; Single Precision
Single precision: p = 16 and » = 3
Run times (seconds) Error £
N Alg. 1 Alg. 2 Alg. 3 FFT Direct Alg. 1 Alg. 2 Alg. 3 FFT
a2 54 62 207 34 567 1.6e-08 2.4e-08 9.1e-09 4.2e-02
64 9.7 95 414 3.7 2262 i.7e-08 3.7e-08 1.6e-08 3.1e-02
128 297 161 875 5.0 060 1.1e-08 3.9e-08 1.1e-08 2.9e-02
256 117.3 400 3083 12.2 36100 3.3e-09 2.5e-08 3.2e-00 1.7e-02
TABLE VI
Run Times and Errors for Example 3; Double Precision
Double precision: p = 36 and v = 3
Run times (seconds) FErrer E..
N Alg. 1 Alg. 2 Alg. 3 FFT Direct Alg. 1 Alg. 2 Alg. 3 FFT
32 32 238 1086 4.7 602 9.0e-15 6.7e-14 5.8e-15 4.1e-02
64 44 378 2259 5.0 2397 1.0e-14 6.7e-14 1.0e-14 3.1e-02
128 82 711 5742 6.3 9553 1.le-14 6.7e-14 4.4e-15 3.3e-02
256 177 1285 14973 13.1 38216 1.9¢-14 6.7e-14 2.1e-15 1.8e-02

TRANSFORMS OF PIECEWISE CONSTANT FUNCTIONS

379

TABLE VII

Run Times and Errors for Example 3; Single Precision

Single precision: p = 16 and » = 3

Run times (seconds) Error E.
N Alg. 1 Alg. 2 Alg. 3 FFT Direct Alg. 1 Alg. 2 Alg. 3 FFT
32 9 59 245 47 602 1.4e-08 2.4e-08 9.2e-09 4,1e-02
64 15 91 473 5.0 2397 1.6e-08 3.7¢-08 1.6e-08 3.1e-02
128 38 157 974 6.3 9553 1.1e-08 3.9:-08 1.1e-08 3.3¢-02
256 128 389 3307 13.1 38216 3.4e-09 2.5e-08 3.2e-09 1.8e-02

putation. Since N, grows linearly with N, the total run times
appear to grow linearly as well.

4. Algorithm 2 is at least four times faster than Algorithm 3,
even when the ratio of perimeter to area is large and Algorithm 1
is about three times as fast as Algorithm 2 on realistic problems
(Examples 2 and 3). On the same realistic problems all three
algorithms are faster (for N = 64) than the direct, closed-form
solution {see Lemma 5.4) even when it is available.

5. InExamples 2, 3, the errors for the straightforward FFT-
based algorithm appear to decay siower than N~'. The reason
for this anomaly is that at the numbers of nodes in the grids
used (no more that 512 X 512) many of the domains [J; (see
(16)) are not resolved. Thus, the scheme has not entered its
asymptotic regime and is displaying transient behavior. Clearly,
this problem does not occur for Algorithms 1-3.

7. CONCLUSIONS

We have presented an algorithm for the evaluation of the
Fourter transform of piecewise constant functions of two vari-
ables. The algorithm overcomes the accuracy problems associ-
ated with computing the Fourier transform of discontinuous
functions; in fact, its time complexity is O(N? log N + NP
tog*(1/e) + Clog’(1/e)), where & is the accuracy, N is the size
of the problem, P is the perimeter of the set of discontinuities,
and V is its number of vertices.

The algorithm is based on the Lagrange interpolation formula

and the Green's theorem, which are used to preprocess the data
before applying the FFT. It admits natural generalizations to
higher dimensjons and to piecewise smooth functions; this work
is in progress and will be reported at a later date.

ACKNOWLEDGMENTS

The author thanks Professors Ronald Coifman and Viadimir Rokhlin for
several useful discussions. He also thanks Professor Eytan Barouch for sug-
gesting the problem and supplying the VLSI masks for the experiments.

REFERENCES

1. M. Abramowitz and 1. Stegun, Handbook of Mathematical Functions (Do-
ver, New York, 1970).

2. E. O. Brigham, The Fast Fourier Transform and its Applications (Prentice—
Hall, Englewcod Cliffs, NJ, 1988).

3. J. W. Cooley and J. W. Tukey, Math. Comput. 19 (1965).

4. G. Dahlquist and A. Bjorck, Numerical Methods (Prentice—Hall, Engle-
wood Cliffs, NI, 1974).

5. D. Gonlieb, M, Y. Hussaini, and S, Orszag, in Spectral Methods for Partial
Differential Equations, edited by R. G, Voigt, D. Gottlieb, and M. Y.
Hussaini (SIAM, Philadelphia, 1984).

6. 1. 8. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products
(Academic Press, New York, 1980).

7. I. Stoer and R. Bulirsch, fntroduction to Numerical Analysis (Springer-
Verlag, New York, 1980).

8. H.J. Weaver, Theory of Discrete and Continuous Fourier Analysis (Wiley,
New York, 1989),

